Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611763

RESUMO

Salvia miltiorrhiza seeds (SMS) are the main by-product of the production processing of Radix Salviae Miltiorrhizae. The main purposes of this work are to analyse the nutritional components in SMS, to explore the antioxidant activity of the chemical components in SMS and to evaluate the possibility of SMS as a raw material for functional foods. The contents of crude fibre, total protein, carbohydrates, total phenolics and flavonoids in SMS and the composition and relative content of fatty acids in SMS oil were determined. The results suggested that SMS has high contents of crude fibre (28.68 ± 4.66 g/100 g), total protein (26.65 ± 2.51 g/100 g), total phenolics (6.45 ± 0.55 mg of gallic acid equivalent/g) and total flavonoids (3.28 ± 0.34 mg of rutin equivalent/g), as well as a high level of α-linolenic acid (33.774 ± 4.68%) in their oil. Twenty-two secondary metabolites were identified in SMS residue, and nine compounds were isolated. The IC50 values of the total phenolic content in SMS on an ABTS radical, DPPH radical, superoxide radical and hydroxyl radical were 30.94 ± 3.68 µg/mL, 34.93 ± 4.12 µg/mL, 150.87 ± 17.64 µg/mL and 230.19 ± 24.47 µg/mL, respectively. The results indicate that SMS contain many nutrients and have high utilization value as a promising functional food.


Assuntos
Antioxidantes , Magnésio , Radioisótopos , Salvia miltiorrhiza , Antioxidantes/farmacologia , Flavonoides , Fenóis , Compostos Fitoquímicos/farmacologia , Sementes
2.
Nanoscale ; 16(15): 7547-7558, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38501312

RESUMO

The concept of combining external medical stimuli with internal functional biomaterials to achieve cancer-oriented treatments is being emergingly developed. Optical and acoustical activations have shown particular promise as non-invasive regulation modalities in cancer treatment and intervention. It is always challenging to leverage the contributions of optical and acoustical stimuli and find appropriate biomaterials to optimally match them. Herein, a type of hybrid nanomicelle (ICG@PEP@HA) containing ICG as a photo/sonosensitizer, an amphiphilic peptide for membrane penetration and hyaluronic acid for cluster determinant 44 (CD44) targeting was fabricated. Triggered by the external stimuli of laser and US irradiation, their photo/sonothermal performance, in vitro reactive oxygen species (ROS) production capability and tumor-targeting efficiency have been systematically evaluated. It was interestingly found that the external stimulus of laser irradiation induced a greater quantity of ROS, which resulted in significant cell apoptosis and tumor growth inhibition in the presence of ICG@PEP@HA. The individual analyses and corresponding rationales have been investigated. Meanwhile, these hybrid nanomicelles were administered into MDA-MB-231 tumor-bearing nude mice for PDT and SDT therapies and their biocompatibility assessment, and a prevailing PDT efficacy and reliable bio-safety have been evidenced based on the hematological analysis and histochemical staining. In summary, this study has validated a novel pathway to utilize these hybrid nanomicelles for laser/US-triggered localized tumor treatment, and the treatment efficiency may be leveraged by different external stimuli sources. It is also expected to give rise to full accessibility to clinical translations for human cancer treatments by means of the as-reported laser/US-nanomicelle combination strategy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Humanos , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Hipertermia Induzida/métodos , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico
3.
Chemosphere ; 353: 141655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460851

RESUMO

This study explored the feasibility of calcium peroxide (CaO2) to inhibit cyanobacterial blooms of the outbreak and dormancy stages. Our previous studies have found that CaO2 has a high inhibitory effect on cyanobacteria. In order to explore the application effect of CaO2 in actual cyanobacteria lake water, we conducted this study to clarify the effect of CaO2 on inhibiting cyanobacteria in outbreak and dormancy stages. The results showed that CaO2 inhibited the growth of cyanobacteria in the outbreak and dormancy stages by 98.7% and 97.6%, respectively. The main inhibitory mechanism is: (1) destroy the cell structure and make the cells undergo programmed cell death by stimulating the oxidation balance of cyanobacteria cells; (2) EPS released by cyanobacteria resist stimulation and combine calcium to form colonies, and accelerate cell settlement. In addition to causing direct damage to cyanobacteria, CaO2 can also improve water quality and sediment microbial diversity, and reduce the release of sediment to phosphorus, so as to further contribute to cyanobacterial inhibition. Finally, the results of qRT-PCR analysis confirmed the promoting effect of CaO2 on the downregulation of photosynthesis-related genes (rbcL and psaB), microcystn (mcyA and mcyD) and peroxiredoxin (prx), and verified the mechanism of CaO2 inhibition of cyanobacteria. In conclusion, this study provides new findings for the future suppression of cyanobacterial bloom, by combining water quality, cyanobacterial inhibition mechanisms, and sediment microbial diversity.


Assuntos
Cianobactérias , Microbiota , Qualidade da Água , Lagos/microbiologia , Fósforo/farmacologia , Fósforo/análise , Eutrofização
4.
J Mater Chem B ; 12(12): 3006-3014, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451210

RESUMO

Inorganic biomaterials are used in various orthopedic and dental implants. Nevertheless, they cause clinical issues such as loosening of implants and patient morbidity. Therefore, inspired by mussel adhesive proteins, we aimed to design an adhesive and dimer-forming highly active bone morphogenetic protein-2 (BMP-2) using bioorthogonal chemistry, in which recombinant DNA technology was combined with enzymatic modifications, to achieve long-term osseointegration with titanium. The prepared BMP-2 exhibited substantially higher binding activity than wild-type BMP-2, while the adhered BMP-2 was more active than soluble BMP-2. Therefore, the adhesive BMP-2 was immobilized onto titanium wires and screws and implanted into rat bones, and long-term osteogenesis was evaluated. Adhesive BMP-2 promoted the mechanical binding of titanium to bones, enabling efficient bone regeneration and effective stabilization of implants. Thus, such adhesive biosignaling proteins can be used in regenerative medicine.


Assuntos
Regeneração Óssea , Titânio , Ratos , Animais , Humanos , Titânio/farmacologia , Próteses e Implantes , Osteogênese , Osseointegração
5.
J Colloid Interface Sci ; 652(Pt A): 350-361, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598435

RESUMO

A green, low-cost, high-performance Fe/N co-doped biochar material (Fe-N@C) was synthesized using salvaged cyanobacteria without other extra precursors for peroxymonosulfate (PMS) activation and ofloxacin (OFX) degradation. With the increased pyrolysis temperature, the graphitization degree, the specific surface area and the corresponding groups like OH, COO etc. for Fe-N@C tended to increase, resulting in a greater OFX adsorption. However, the total amount of Fe-NX and graphitic nitrogen groups in the Fe-N@C composites was firstly increased and then decreased, which reached the highest at 800 °C (Fe-N@C-800). All these changes of functional species ascribed to the strong interaction between Fe, N and C led to the highest defect degree of Fe-N@C-800, resulting the highest OFX removal efficiency of 95.0 %. OFX removal experiments indicated the adsorption process promoted the total OFX degradation for different functional groups on Fe-N@C composites separately dominated the process of OFX adsorption and PMS catalysis. Radical quenching and electron paramagnetic resonance (EPR) measurements proved free radical and non-free radical pathways participated in Fe-N@C/PMS system. The non-free radicals based on 1O2 and high-valent iron-oxo species played a more important role in OFX degradation, leading to the minimal effect of co-existing anions and the high universality for other antibiotic pollutants. Fe-NX was utilized as the main catalytic sites and graphitic nitrogen contributed more to the electron transfer for PMS activation, whose synergistic effect efficiently facilitated OFX degradation. Finally, the possible degradation route of OFX in the Fe-N@C-800/PMS system was proposed. All these results will provide the new insights into the intrinsic mechanism of Fe/N species in carbon-based materials for PMS activation.


Assuntos
Cianobactérias , Ferro , Ofloxacino , Nitrogênio , Peróxidos
6.
Chemosphere ; 339: 139725, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543233

RESUMO

Dissolved organic matter (DOM) is reported to be a precursor to disinfection by-products (DBPs), which have adverse effects on human health. Therefore, it is crucial to effectively remove DOM before water disinfection. Characteristics of DOM and DBPs formation during advanced treatment processes including coagulation, adsorption, ultraviolet (UV) irradiation, and ozone (O3) oxidation in municipal secondary effluent were investigated in this research. DOM was characterized by Fourier transform infrared spectroscopy (FTIR), excitation-emission matrix fluorescence spectroscopy (EEM), and Orbitrap mass spectrometry (Orbitrap MS). Moreover, DBPs formation potential under different advanced treatment processes was also discussed. FTIR results indicated that various functional groups existing in DOM may react with the disinfectant to form toxic DBPs. EEM analysis indicated that DOM in all water samples was dominated by soluble microbial product-like (SMPs) and humic acid-like (HA) substances. The municipal secondary effluent was abundant with DOM and rich in carbon, hydrogen, oxygen, and nitrogen atoms, contained a certain dosage of phosphorus and sulfur atoms, and the highest proportion is lignin. Most of the precursors (CHO features) had positive double bond equivalent subtracted oxygen per carbon [(DBE-O)/C] and negative carbon oxidation state (Cos) in all four different advanced treatment processes. DBPs formation potential (DBPFP) of coagulation, adsorption, UV irradiation, and O3 oxidation advanced treatment processes were 487 µg L-1, 586 µg L-1, 597 µg L-1, and 308 µg L-1, respectively. And the DBPs precursors removal efficiency of coagulation, adsorption, UV irradiation, and O3 oxidation advanced treatment processes were 50.8%, 40.8%, 39.8%, and 69.0%, respectively. This study provides in-depth insights into the changes of DOM in municipal secondary effluent at the molecular level and the removal efficiency of DBPs precursors during coagulation, adsorption, UV irradiation, and O3 oxidation advanced treatment processes.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Humanos , Desinfecção/métodos , Matéria Orgânica Dissolvida , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Água , Espectrometria de Massas , Ozônio/análise , Carbono
7.
Toxins (Basel) ; 15(7)2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37505717

RESUMO

The rapid rise of microcystins (MCs) poses a serious threat to global freshwater ecosystems and has become an important issue of global public health. MCs have considerable stability and are the most widely distributed hepatotoxins. It cannot only accumulate in aquatic organisms and transfer to higher nutrients and levels, but also be degraded or transferred during the resource utilization of cyanobacteria. No matter which enrichment method, it will lead to the risk of human exposure. This review summarizes the research status of MCs, and introduces the distribution of MCs in different components of aquatic ecosystems. The distribution of MCs in different aquatic organisms was summarized, and the potential risks of MCs in the environment to human safety were summarized. MCs have polluted all areas of aquatic ecosystems. In order to protect human life from the health threats caused by MCs, this paper also proposes some future research directions to promote MCs control and reduce human exposure to MCs.


Assuntos
Microcistinas , Poluentes da Água , Microcistinas/análise , Microcistinas/toxicidade , Humanos , Cianobactérias , Ecossistema , Água Doce/química , Poluentes da Água/análise , Poluentes da Água/toxicidade
8.
Environ Pollut ; 330: 121750, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149252

RESUMO

Invertebrates in drinking water not only affect human health, but also provide migration and shelter for pathogenic microorganisms. Their residues and metabolites also produce DBPs (disinfection by-products), which have adverse effects on the health of residents. In this study, the contributions of the rotifers and nematodes to the BDOC (biodegradable dissolved organic carbon), BRP (bacterial regrowth potential) and DBPs in drinking water were explored, and the sheltering effects of chlorine-resistant invertebrates on indigenous bacteria and pathogenic bacteria were studied, and the health and safety risk of invertebrates in drinking water was also assessed. The contributions of rotifer BAPs (biomass-associated products), UAPs (utilization-associated products) of rotifer, and nematode BAPs to the BRP were 46, 1240, and 24 CFU/mL. Nematodes were found to have a sheltering effect on indigenous bacteria and pathogenic bacteria, allowing them to resist chlorine disinfection and UV (ultraviolet) disinfection. When subjected to a UV dose of 40 mJ/cm2, the inactivation rates of indigenous bacteria and three pathogenic bacteria decreased by 85% and 39-50% when bacteria were sheltered by the living nematodes; while decreased by 66% and 15-41% when they were sheltered by nematode residue. The safety risk posed by invertebrates in the drinking water was mainly due to their ability to promote bacterial regeneration and carry bacteria. This study aims to provide a theoretical basis and technical support for the risk control of invertebrates' pollution, and provides references for ensuring the safety of drinking water and formulating standards for the levels of invertebrates in drinking water.


Assuntos
Desinfetantes , Água Potável , Rotíferos , Poluentes Químicos da Água , Purificação da Água , Animais , Humanos , Qualidade da Água , Cloro/análise , Desinfecção , Invertebrados , Bactérias , Poluentes Químicos da Água/análise , Abastecimento de Água , Desinfetantes/toxicidade
9.
Sci Total Environ ; 882: 163591, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37087006

RESUMO

This study explored the feasibility and mechanism of cyanobacterial blooms control by calcium peroxide (CaO2). The obtained results demonstrated a strong inhibitory effect of CaO2 on cyanobacterial growth. The removal chlorophyll-a rate reached 31.4 %, while optimal/maximal quantum yield of PSII (Fv/Fm) decreased to 50 % after CaO2 treatment at a concentration of 100 mg L-1 for 96 h. Two main mechanisms were involved in the treatment of cyanobacterial bloom with CaO2, namely oxidative damage and cyanobacterial colony formation. It was found that CaO2 released reactive oxygen species (ROS), namely hydroxyl radicals (·OH), singlet oxygen (1O2), and superoxide radicals (·O2-), inhibiting the activity of antioxidant enzymes in cyanobacterial cells and resulting in intracellular oxidation imbalance. Cyanobacteria can resist oxidative damage by releasing extracellular polymeric substances (EPS). These EPS can combine with CaO2-derived Ca, forming large cyanobacterial aggregates and, consequently, accelerating cell sedimentation. In addition, CaO2 caused programmed cell death (PCD) of cyanobacteria and irreversible damage to the ultrastructure characteristic of the cyanobacterial cells. The apoptotic rate was greatly improved at 100 mg L-1 CaO2. On the other hand, the results obtained using qRT-PCR analysis confirmed the contribution of CaO2 to the down-regulation of photosynthesis-related genes (rbcL and psaB), the up-regulation of microcystins (mcyA and mcyD), the up-regulation of the oxidation system: peroxiredoxin (prx) through oxidative mechanisms. The present study proposes a novel treatment method for water-containing cyanobacterial blooms using CaO2.


Assuntos
Cianobactérias , Peróxidos/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Peróxido de Hidrogênio
10.
Mitochondrial DNA B Resour ; 7(9): 1594-1596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082045

RESUMO

Suaeda physophora Pall. (Chenopodiaceae) is a leaf succulent shrub species with potential usefulness as fodder for the desert animal. However, the phylogeny of S. physophora is lacking. Here, we sequenced and assembled a complete chloroplast genome of S. physophora and further reconstructed the phylogeny of Chenopodiaceae. The chloroplast genome of S. physophora is 151,104 bp in length, consisting of an 18,597 bp small single-copy (SSC), an 82,845 bp large single-copy (LSC), and a pair of 24,831 bp inverted repeat (IR) regions. The genome encodes 131 genes, including 87 protein-coding genes, 36 tRNA genes, and eight rRNA genes. Phylogenetic analysis revealed that the genus Suaeda forms a monophyletic taxon, and S. physophora is closely related to S. eltonica. Chloroplast genome and phylogenetic studies provided an essential foundation for the conservation of S. physophora.

11.
Sci Total Environ ; 797: 148773, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34298362

RESUMO

Personal care products (PCPs) are contaminants of emerging concern because of their continuous input into the environment. In this study, membrane bioreactor (MBR) and constructed wetland (CW) methods were used to investigate the effect and mechanism of conventional pollutant and PCP removal from greywater. The effluent of both the MBR- and CW-treated greywater met the reclaimed water reuse standard in China. Conventional pollutants and five target PCPs had a higher removal efficiency in the MBR than in the CW. The removal rates of the PCPs, including Tuina musk (AHTN), were >80% using MBR and CW methods. The main pathway of removing PCPs in the MBR was sludge adsorption and biodegradation, whereas the contribution of the membrane module was weak. The main pathway of removing PCPs in the CW was the combined action of plant absorption, microbial biodegradation, and substrate adsorption, depending on the PCP type. Ethyl hexyl methoxycinnamate (EHMC) has strong biological oxidizability and was mainly removed by biodegradation, whereas Jiale musk (HHCB) and AHTN were mainly removed by adsorption. Six types of CW substrates were investigated, and perlite showed the best adsorption effect for the five target PCPs. The optimal substrate adsorption pH was 7. This study provides important technical information on the effective removal of conventional pollutants and PCPs in greywater and the preparation of high-quality reclaimed water.


Assuntos
Cosméticos , Poluentes Químicos da Água , Reatores Biológicos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise , Áreas Alagadas
12.
Adv Sci (Weinh) ; 8(16): e2100961, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174166

RESUMO

Artificial materials have no biological functions, but they are important for medical devices such as artificial organs and matrices for regenerative medicine. In this study, mitogenic and differentiation-inducible materials are devised via the simple coating of polypeptides, which contain the sequence of epidermal growth factor or insulin-like growth factor with a key amino acid (3,4-dihydroxyphenylalanine) of underwater adhesive proteins. The adhesive polypeptides prepared via solid-phase synthesis form layers on various substrates involving organic and inorganic materials to provide biological surfaces. Through the direct activation of cognate receptors on interactive surfaces, the materials enable increased cell growth and differentiation compared to that achieved by soluble growth factors. This superior growth and differentiation are attributed to the long-lasting signal transduction (triggered by the bound growth factors), which do not cause receptor internalization and subsequent downregulation.

13.
ACS Chem Biol ; 16(2): 316-323, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33448787

RESUMO

Inhibiting the programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) axis by monoclonal antibodies (mAbs) is a successful cancer immunotherapy. However, mAb-based drugs have various disadvantages including high production costs and large molecular sizes, which motivated us to develop a smaller alternative drug. Since PD-L1 binds PD-1 with moderate affinity, a higher affinity PD-1 variant should serve as a competitive inhibitor of the wild-type PD-1/PD-L1 interaction. In this report, we conducted in silico point mutagenesis of PD-1 to identify potent PD-1 variants with a higher affinity toward PD-L1 and refined the in silico results using a luciferase-based in-cell protein-protein interaction (PPI) assay. As a result, a PD-1 variant was developed that had two mutated amino acids (T76Y, A132V), termed 2-PD-1. 2-PD-1 could bind with PD-L1 at a dissociation constant of 12.74 nM. Moreover, 2-PD-1 successfully inhibited the PD-1/PD-L1 interaction with a half maximal inhibitory concentration of 19.15 nM and reactivated the T cell with a half maximal effective concentration of 136.1 nM. These results show that in silico mutagenesis combined with an in-cell PPI assay verification strategy successfully prepared a non-IgG inhibitor of the PD-1/PD-L1 interaction.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas de Checkpoint Imunológico/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica/efeitos dos fármacos , Simulação por Computador , Células HeLa , Humanos , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Mutagênese , Mutação Puntual , Receptor de Morte Celular Programada 1/genética , Engenharia de Proteínas , Linfócitos T/efeitos dos fármacos
14.
Sci Total Environ ; 752: 141223, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32898796

RESUMO

Reclaimed water can significantly reduce household water consumption. However, microbial growth introduces several problems to reclaimed water, including health concerns, aesthetic deterioration and biofouling. Biological stability refers to the potential of organic matter or nutrients in water to support heterotrophic bacterial growth (HPC). Assimilable organic carbon (AOC) and biodegradable organic carbon (BDOC) are often used as indicators to evaluate the biological stability of water. This study investigated the effect of residual chlorine on the interaction between bacterial regrowth and AOC or BDOC and the variation of AOC after chlorine disinfection in reclaimed water. The results show that the HPC level is insensitive to AOC concentration when residual chlorine is >0.5 mg/L; however, the effects are more pronounced when residual chlorine is <0.5 mg/L. A residual chlorine concentration of >0.5 mg/L therefore maintains biological stability in reclaimed water. When residual chlorine was <0.5 mg/L, HPC levels were found to be limited when AOC was <128 µg/L or BDOC was <0.25 mg/L; and when residual chlorine was >0.5 mg/L, HPC levels were found to be limited when AOC was <796 µg/L or BDOC was <0.85 mg/L in reclaimed water. After chlorine disinfection, AOC contents initially increase and then decrease gradually, reaching minimum levels around day 20, and then increase in both greywater reclaimed water and mixed wastewater reclaimed water. Maintaining the chlorine demand and controlling the AOC level is critical for producing an effect on microbial regrowth and stabilising reclaimed water. The results of this study are conducive to the popularisation of reclaimed water use and also provide reference for reuse standards of reclaimed water.


Assuntos
Cloro , Purificação da Água , Carbono , Desinfecção , Água , Microbiologia da Água
15.
Sensors (Basel) ; 20(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012919

RESUMO

Regular crack inspection of tunnels is essential to guarantee their safe operation. At present, the manual detection method is time-consuming, subjective and even dangerous, while the automatic detection method is relatively inaccurate. Detecting tunnel cracks is a challenging task since cracks are tiny, and there are many noise patterns in the tunnel images. This study proposes a deep learning algorithm based on U-Net and a convolutional neural network with alternately updated clique (CliqueNet), called U-CliqueNet, to separate cracks from background in the tunnel images. A consumer-grade DSC-WX700 camera (SONY, Wuxi, China) was used to collect 200 original images, then cracks are manually marked and divided into sub-images with a resolution of 496 × 496 pixels. A total of 60,000 sub-images were obtained in the dataset of tunnel cracks, among which 50,000 were used for training and 10,000 were used for testing. The proposed framework conducted training and testing on this dataset, the mean pixel accuracy (MPA), mean intersection over union (MIoU), precision and F1-score are 92.25%, 86.96%, 86.32% and 83.40%, respectively. We compared the U-CliqueNet with fully convolutional networks (FCN), U-net, Encoder-decoder network (SegNet) and the multi-scale fusion crack detection (MFCD) algorithm using hypothesis testing, and it's proved that the MIoU predicted by U-CliqueNet was significantly higher than that of the other four algorithms. The area, length and mean width of cracks can be calculated, and the relative error between the detected mean crack width and the actual mean crack width ranges from -11.20% to 18.57%. The results show that this framework can be used for fast and accurate crack semantic segmentation of tunnel images.

16.
Environ Sci Pollut Res Int ; 27(28): 34653-34663, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31104237

RESUMO

The reuse of wastewater is one effective approach to solving the problem of water resource scarcity. However, deterioration in the quality of reused water, such as increased odor and bacterial growth, restricts its reuse. The objectives of this study were to characterize graywater (GW) treatment technology and to verify the suitability of the reclaimed water for toilet flushing. A membrane bioreactor (MBR) and biological aerated filter (BAF) were used to treat GW in a 1-year laboratory-scale experiment. The optimal operational conditions of the MBR and BAF were as follows: hydraulic retention time = 2-3 h, dissolved oxygen = 4-7 mg/L, mixed liquor suspended solids = 3500-4500 mg/L, and contact reaction time = 1.96-5.89 h, dissolved oxygen = 3-5 mg/L, backwash cycle time = 24-48 h, respectively. The MBR treatment resulted in reductions in COD, NH3-N, and turbidity of 60-90%, 80-90%, and 95-99%, respectively, whereas those of BAF treatment were 50-90%, 50-90%, and 80-90%, respectively. The BOD5 values of MBR and BAF effluent were 1.2-4.5 mg/L and 2.5-7 mg/L, respectively. GW treated by both MBR and BAF met the standard for reusing water for toilet flushing. The effluent from MBR, BAF, and BAF + ultrafiltration treatment and purified mixed wastewater was used to simulate toilet flushing at 28 °C, with the addition of 5 mg/L NaClO to the reused water. The residual chlorine levels were 1.5, 0.6, 0.9, and 0.5 mg/L, respectively, after 15 days. No bacteria were detected in any of the reclaimed water after 15 days. The water quality of the effluent of MBR-treated GW was better than that of the mixed wastewater. The results show that it is viable to use GW purified by MBR for toilet flushing. This study provides a scientific basis for the popularization and application of reclaimed water for toilet flushing.


Assuntos
Aparelho Sanitário , Purificação da Água , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos , Águas Residuárias , Água
17.
Int J Nanomedicine ; 14: 7683-7694, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31571871

RESUMO

BACKGROUND: Nerve regeneration is important for the treatment of degenerative diseases and neurons injured by accidents. Nerve growth factor (NGF) has been previously conjugated to materials for promotion of neurogenesis. MATERIALS AND METHODS: Photoreactive gelatin was prepared by chemical coupling of gelatin with azidobenzoic acid (P-gel), and then NGF was immobilized on substrates in the presence or absence of micropatterned photomasks. UV irradiation induced crosslinking reactions of P-gel with itself, NGF, and the plate for immobilization. RESULTS: By adjustment of the P-gel concentration, the nanometer-order height of micropatterns was controlled. NGF was quantitatively immobilized with increasing amounts of P-gel. Immobilized NGF induced neurite outgrowth of PC12 cells, a cell line derived from a pheochromocytoma of the rat adrenal medulla, at the same level as soluble NGF. The immobilized NGF showed higher thermal stability than the soluble NGF and was repeatedly used without loss of biological activity. The 3D structure (height of the formed micropattern) regulated the behavior of neurite guidance. As a result, the orientation of neurites was regulated by the stripe pattern width. CONCLUSION: The micropattern-immobilized NGF nanolayer biochemically and topologically regulated neurite formation.


Assuntos
Proteínas Imobilizadas/farmacologia , Microtecnologia/métodos , Nanopartículas/química , Fator de Crescimento Neural/farmacologia , Neuritos/metabolismo , Animais , Humanos , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura , Células PC12 , Estabilidade Proteica/efeitos dos fármacos , Ratos , Solubilidade , Suínos , Temperatura
18.
Protein Expr Purif ; 149: 17-22, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29654824

RESUMO

Human folate receptors (hFRα and hFRß) are membrane proteins anchored to the cell surface by glycosylphosphatidylinositol. They play an important role in cell growth by taking up folate for de novo synthesis of purines and methylation of DNA, lipids, and proteins. Thus, controlling folate uptake through hFRs may lead to the development of anti-cancer drugs. Development of hFRs-targeting drug requires a large amount of hFRs. However, it is difficult to prepare active forms of hFRs from prokaryotic cells because of their high content of cysteine residues that form disulfide bonds. Here, we prepared active forms of hFRα and hFRß from inclusion bodies of Escherichia coli. The crucial steps in our preparation were intensive washing of the inclusion bodies to remove impurities derived from E. coli and gradual dropping of solubilized hFRs into refolding buffers to correctly reform disulfide bonds. The binding activity of prepared hFRs to folate was confirmed by biolayer interferometry measurements. Finally, we successfully prepared the active form of 2.52 mg hFRα and 2.4 mg hFRß from 10 g of E. coli cell bodies.


Assuntos
Receptor 1 de Folato/biossíntese , Receptor 2 de Folato/biossíntese , Dobramento de Proteína , Escherichia coli , Receptor 1 de Folato/genética , Receptor 2 de Folato/genética , Expressão Gênica , Humanos , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
19.
BMC Cancer ; 18(1): 303, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554887

RESUMO

BACKGROUND: The expression of circular RNA (circRNA) may affect tumor progression. However, there have been no systemic meta-analysis for cancer diagnosis by using circRNAs in clinical till now. Herein, we aimed to collect and examined all the evidence on the potential role of circRNA as novel biomarker in human cancers. METHODS: A comprehensive search strategy was used to search relevant literatures in the databases of PubMed, Embase, and the Web of Science from 2015 to August 2017. The correlation between circRNA expression and the diagnostic accuracy of tumor markers was analyzed. The methodological quality of each study was assessed by quality assessment for the diagnostic accuracies of the eligible studies (QUADAS-2). Statistical analysis was performed by applying the STATA (version 12.0) software. RESULTS: The present meta-analysis included 1752 patients with circRNA expression data of tumor and paired adjacent non-tumorous tissues from 17 publications (19 studies). The pooled sensitivity, specificity, positive likelihood ratios (PLR), negative likelihood ratios (NLR), and diagnostic OR (DOR) with their 95% confidential intervals (95%CIs), and AUC values were 0.72 (0.67-0.76), 0.74 (0.69-0.78), 2.80 (2.40-3.10), 0.38 (0.33-0.44), 7.00 (6.00-9.00), and 0.79, respectively. Subgroup analyses showed that the expression of circRNA in tissues of hepatocellular carcinoma (HCC) group was more prone to be detected than other tumor types, with a high values of the specificity, DOR, and AUC. CONCLUSIONS: circRNAs might be suitable as diagnostic biomarkers for tumors, especially in HCC diagnosis. Further prospective studies on the diagnostic value of circRNAs from the different tumors are needed in the future.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , RNA/sangue , Software , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , RNA/genética , RNA Circular
20.
Water Sci Technol ; 78(10): 2193-2203, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30629547

RESUMO

Semicentralized supply and treatment systems (SCSTSs), which can realize water, nutrition, and energy recycling via separate water supply and discharge systems, have been developed for fast-growing urban areas. The world's first full-scale SCSTS was implemented in Qingdao in China. Greywater (GW) and blackwater (BW) are collected and treated separately, but the parallel setting of the BW and GW pipelines means that connection mistakes can easily occur. Taking Qingdao as an example, this article analyzes the occurrences of BW and GW pipeline misconnections and the changes in influent pollutants, to assess the feasibility of separating domestic sewage at the source. The misconnection rates were estimated by comparing the measured values with the theoretical values. The results show that cross-connections occurred in some buildings, and the average misconnection rates were 31.9%, 15.2%, 60.6%, and 0.2%, respectively, in hotels, residences, an office building, and a public building. The overall misconnection rate in the SCSTS was 27.9%. These findings suggest that measures should be taken to avoid or reduce misconnections. This study can provide a reference for the future design and construction of SCSTSs and has important practical significance for protecting the environment.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , China , Esgotos , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...